Interpretability of Machine Learning Solutions in Public Healthcare: The CRISP-ML Approach
نویسندگان
چکیده
منابع مشابه
the impact of e-readiness on ec success in public sector in iran the impact of e-readiness on ec success in public sector in iran
acknowledge the importance of e-commerce to their countries and to survival of their businesses and in creating and encouraging an atmosphere for the wide adoption and success of e-commerce in the long term. the investment for implementing e-commerce in the public sector is one of the areas which is focused in government‘s action plan for cross-disciplinary it development and e-readiness in go...
the place of iranian public diplomacy in central asia
چکیده: نسبت به کارکرد و ماهیت دیپلماسی عمومی در جهان امروز نظریه های متعددی بیان گردیده و جایگاه آن در کنار نظریه های دیگر در محافل آکادمیک و دانشگاهی بررسی و تحلیل گردیده است. نظر به اهمیت دیپلماسی عمومی و جایگاه آن در سیاست خارجی ایران این نوشتار با تمرکز بر دیپلماسی عمومی در منطقه آسیای مرکزی تهیه و تنظیم شده است. این ضرورت از آنجا ناشی می شود که اولاً مفهوم دیپلماسی عمومی در سیاست خارجی ای...
15 صفحه اولModel-Agnostic Interpretability of Machine Learning
Understanding why machine learning models behave the way they do empowers both system designers and end-users in many ways: in model selection, feature engineering, in order to trust and act upon the predictions, and in more intuitive user interfaces. Thus, interpretability has become a vital concern in machine learning, and work in the area of interpretable models has found renewed interest. I...
متن کاملthe effect of learning strategies on the speaking ability of iranian students in the context of language institutes
the effect of learning strategies on the speaking ability of iranian students in the context of language institutes abstract language learning strategies are of the most important factors that help language learners to learn a foreign language and how they can deal with the four language skills specifically speaking skill effectively. acknowledging the great impact of learning strategies...
Machine Learning Model Interpretability for Precision Medicine
Interpretability of machine learning models is critical for data-driven precision medicine efforts. However, highly predictive models are generally complex and are difficult to interpret. Here using Model-Agnostic Explanations algorithm, we show that complex models such as random forest can be made interpretable. Using MIMIC-II dataset, we successfully predicted ICU mortality with 80% balanced ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Big Data
سال: 2021
ISSN: 2624-909X
DOI: 10.3389/fdata.2021.660206